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Introduction

** What is federated learning?
¢ Distributed learning.
¢ Collaborative training.

¢ Training on private data.
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Introduction

**What is a straggler device ?
**Low performing device
s*storage
s*communication
s*computation

**Motivations

**FL is vulnerable to system
heterogeneity.

**When local devices have varying
computational, storage, and
communication capabilities over
time.

**As a result, the presence of stragglers
in the Random selection of devices
produces a low convergence rate and
high delay in the FL network.



Related Work

**FLANP, a straggler-resilient adaptive device participation algorithm.
(Reisizadeh et al.,2020)

s*FedProx, a federated optimization in heterogeneous networks. (Li et
al.,2018)

s*Accelerated Training via Device Similarity in Federated Learning. (Wang
et al.,2021)

s Fair resource allocation in federated learning. (Li et al., 2019 )



Contributions

**We introduce Fed-MOODS, a straggler-resilient Multi-Objective Optimization-
based adaptive prioritized Device Selection approach to mitigate the system
heterogeneity in Federated learning.

**For each device, Fed-MOODS maximizes

s the availability of the processing capacity of each device,
* The availability of the memory in devices, and

** The bandwidth capacity of the participating devices.

**Solving the multi-objective optimization produces the rank of every device from
faster to slower.

**Fed-MOODS adaptively involve devices in Federated learning.
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Proposed System Model
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Problem Formulations

** Multi-objective formulations for

device selection

**Maximize available processing

capacity .
D,=-) (1-p%

Processors
ey . C “
utilization i=1

D¢ = (1—Dcu)(%)

s.t. 0 <D, < 100,0 < D¢ < 100

[26] A. Yadin, Computer Systems Architecture.
CRC Press, 2016.
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*Maximize available

memory

L
DMR =B x Y MR, x Byte

=1

D’?MR c DiTM _ D{}lR

N
max D‘?M K
i=1

DM
stk 2 1,0 < DM <100

l

0 < DMR <100

i https://cs231n.github.io/convolution
i al-networks/#case

*Maximize available

bandwidth
RNB Dz’TD * (1OO/D¢DR)
Or S T o
m_j\éxD{eNB

i=1
s.t. DPVT > 1, DPR > 100,D'P > 0
https://www.ibm.com/docs/en/tsmfsan/7.1.0?topic

=5SSQZW_7.1.0/com.ibm.itsm.srv.doc/t_repl_est b
w.html



Problem Formulations

**Federated learning objective

n’ < min(n + (1,k), N)



Fed-

smmme  Phase 1 (Device rank)

MOODS

1. Server collects meta-data to compute available processing capacity, memory, and
bandwidth from N number of total devices.

2. Compute objective function of (1) available processing capacity, (2) available memory,
(3) available bandwidth for each device.

3. Maximize these objective functions using Multi-objective optimization.

4.Rank each device based on the pareto fronts.

-

1.Select n' devices from pareto front.
2. Learn global model collaboratively.
3.Add another set of devices from the pareto fronts and learn global model.

4. Continue step 2 and 3 until model converges.
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Experiments

**Simulation setup

2022-07-13

Parameter(s) Value Description

local devices 100 Devices for a local update of the model

Server 1 For performing multi-objective optimization,
model aggregation

Federated algorithm 2 Fed-Avg [14], Fed-Prox [6]

local device’s participation

Dataset
Local iteration

Global iteration

Presence of stragglers

Training network

Optimizer
Performance metrics

Adaptive and random

IID and non-1ID
Maximum 10

Maximum 100, 500

10%, 50%, 70%, 90%

3

|

Adaptive participation of devices for Fed-
MOODS, by random, frequency of participation
is 10%

IID and non-IID division of MNIST, CIFAR-
10, and FMNIST dataset

Number of local iteration at each device for
each global iteration.

100 global iterations for learning on MNIST
and FMNIST dataset. 500 global iterations for
learning model on CIFAR-10 dataset.
Presence of stragglers in each global iteration
for different experiments.

Three Convolutional Neural Network (CNN)
having two hidden layers for training on
MNIST, CIFAR-10, and FMNIST dataset re-
spectively.

Stochastic Gradient Descent (SGD)

Test accuracy, Fl-score
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Experiments

**Phase 1

**Maximize three objective
functions for all available

devices.
**We have used NSGA-II, as a

multi objective
optimization algorithm.

+*¢*Calculate which device has
highest domination.

2022-07-13

Domination

200 -

[}
ul
o

[
o
o

n
(e}
|

o
L

e’ & o0 o o)

Ce o ® 140

120 s &

o % 10025

L 5 80 5=

oo ® 60 5 S

SEY g o ©
..Q. d Lo 40
Q0 o 0° .Oo 200

&8 é"..

[ J

60

40O
P 20 W&
ro 2 0 \
avaiCSsin 80 0 V2
VaI/abI/ ity
20 40 60 80 100

Device

11



Experiments

**Phase 2
*»Adaptive selection of devices based on the ranking of the devices.

**Results and analysis
s Convergence comparison
s Performance evaluation
**Wall clock time analysis
*»Adaptiveness level analysis
s Device fairness analysis



Results (Convergence comparison)
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Convergence comparison of Fed-MOODS and benchmark models with random device participation across (a)
MNIST-1ID, (b) MNIST-non-1ID, with different straggler fractions (sf).
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Results (Convergence comparison)
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Convergence comparison of Fed-MOODS and benchmark models with random
device participation across (c) FMNIST IID, (d) FMNIST non-IID, with different

straggler fractions (sf).
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+* Observation and Inference

+»» Convergence of Fed-
MOODS and random device
selection are equivalent for
the 11D dataset.

¢ For non-1ID datasets, Fed-
MOODS performs better
than Random device
selection.

¢ Less effect of randomness is
present.

** Fed-MOODS + FedProx
converges quicker than
others.
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Results (Performance comparison

**F1 score

PERFORMANCE (F1-SCORE) COMPARISON BETWEEN FED-MOODS AND
BENCHMARK MODELS WITH RANDOM DEVICE PARTICIPATION IN
PRESENCE OF 90% STRAGGLERS. ¥ AND <) DENOTE involving stragglers
AND not involving stragglers, RESPECTIVELY.

Random Random
device device Fed-
o Fed-MOODS + | Fed-MOODS + selection selection MOODS +
FedAvg FedProx i i + FedAvg
FedAvg ¥ | FedAvg & &
MNIST IID 94.7 935 94.00 96.28 97.00
CIFAR-10 IID 48.65 52.92 49.51 49.67 51.79
FMNIST IID 78.66 78.48 80.48 79.01 78.19
MNIST non-IID 93.41 94.27 93.00 NA NA
CIFAR-10 non-IID 49.33 48.79 9.37 NA NA
FMNIST non-IID 63.12 65 50.25 NA NA

*»*Observation and Inference

**The performance of Fed-MOODS
+ FedProx is better than others in
most cases.

2022-07-13

s»*Test accuracy

Fed-MOODS | Fed-MOODS | Random | Random
Dataset SF % + + + +
FedAvg FedProx FedAvg | FedProx
MNIST D 90 97.2 96.31 97.2 96.89
70 97.54 97.49 97.61 97.5
50 97.94 97.76 97.74 97.61
10 98.11 98.39 98.05 98.11
Non-IID 90 92.31 91.93 92.04 . 91.47
70 93.91 92.79 89.18 93.43
50 94.69 93.47 93.05 89.61
10 95.74 93.59 93.17 93.86
CIFAR-10 D 90 53.43 50.20 49.15 48.86
70 46.3 47.15 48.62 47.17
50 43.59 49.42 46.25 48.9
10 46.71 47.33 45.48 44.72
Non-IID 90 49.23 49.55 15.84 10
70 48.75 47.68 33.99 29.75
50 46.56 45.93 24.98 38.44
10 45.86 47.81 33.75 34.0
FMNIST 1D 90 78.66 78.48 80.48 79.44
70 82.63 82.81 83.04 77.63
50 83.32 83.89 85.17 82.59
10 85.39 85.22 84.44 84.68
Non-IID 90 63.22 65.33 50.26 58.18
70 67.16 65.54 56.92 64.07
50 70.0 70.97 55.56 61.81
10 71.76 67.58 58.18 59.26
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Results (Wall-clock time comparison)

TOTAL AND AVERAGE WALL CLOCK TIME COMPARISON BETWEEN
FED-MOODS AND BENCHMARK MODEL WITH RANDOM DEVICE
SELECTION AT PRESENCE OF 90% STRAGGLERS ON NON-IID DATA.

Random

Datasets Device selection

Fed-MOODS

TRandom(M3) | Trandom(Mms) | Trea—moops(ms) | Trea—mooDs(ms)

MNIST 9 x 10° 9 x 10° 4.9 x 10° 4.9 x 10°

FMNIST 8.9 x 10° 8.9 x 10° 6 x 10° 6 x 103

*¢* Observation and Inference

** Fed-MOODS converging before
Random device selection.

** Fed-MOODS is 1.8x and 1.48x faster
than the benchmark model (FedAvg)
with random device participation on
the MNIST and FMNIST non-IID
dataset, respectively.

2022-07-13
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Training loss vs wall-clock time comparison of Fed-MOODS and
benchmark model with random device participation in presence
of 90%, stragglers respectively on MNIST non-IID (left) and
FMNIST non-IID (right) data.
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Results (Adaptiveness)

90% devices are stragglers.

MNIST
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**Increase in adaptivenss produce better

convergence.

“*Larger adaptiveness means involving
stragglers in more iteration.
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Analysis (Device fairness)

**Does Fed-MOODS maintain fairness?
*Yes.
**Every device is getting a chance to contribute to the learning process.

**The probability of appearance(PoA) of non-stragglers is high and for stragglers is
low. Where as, In random device selection, every device has the same PoA.



Conclusion

**We proposed Fed-MOODS, a multi-objective optimization-based adaptive device
selection method to minimize the effect of stragglers in federated learning.

**We formulated the available processing capacity, available memory, and available
bandwidth of every device as a multi-objective optimization problem and by solving
it we generate the rank of devices.

**The algorithm adaptively selects devices for training based on the ranking.

*We found that Fed-MOODS is 1.8x and 1.48x faster than the random device
selection method for MNIST and FMNIST dataset.



Future work

**Theoretical proof of the convergence of the adaptive method.

**Theoretical value for the adaptiveness level.
¢ Device profiling is enough ? Or few more to consider ?
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