

UMEÅ UNIVERSITY

WALLENBERG AI, AUTONOMOUS SYSTEMS AND SOFTWARE PROGRAM

Advancing Federated Learning: Algorithms and Use-Cases

Sourasekhar Banerjee

Ph.D. Student

Department of Computing Science Umeå University, Sweden

September 23, 2024

Outline

- Introduction
- Key Challenges
- Research Objectives and Contributions
- Papers I to VI
- Conclusion
- Future Scope

Federated Learning (FL)

• Collaborative learning without sharing private data

• Train homogeneous model

Why Federated Learning?

Data ownership

Data privacy

Powerful end devices

Reduced communication overhead

and Use-Cases

*Images are generated using DALL-E

Purpose

Challenges

Algorithms

Finance

Recommender system

Use-cases

Healthcare

Memorable

Event Privacy memorability advisor

Advancing Federated Learning: Algorithms

and Use-Cases

Scopes and Assumptions

Scopes	Assumptions	
 Horizontal federated learning 	• Data privacy)
 Homogeneous model training 	 Secured communication channel)
 Clients have full (Cross-Silo) and partial participation (Cross- Device) 	• Model security)

Research Objectives and Contributions

Data heterogeneity

RO1: Develop algorithms for feature selection in federated settings

RO3: Develop personalized FL algorithm for multi-tier settings

Use-cases

RO4: Develop FL-enabled solutions for different use-cases

Paper I & III

Paper IV

Paper V & VI

System heterogeneity

RO2: Develop algorithm for optimal client selection in federated learning

Paper II

Paper I: Fed-FiS: A Novel Information-Theoretic Federated Feature Selection for Learning Stability

Paper II: Optimized and Adaptive Federated Learning for Straggler-Resilient Device Selection

Paper III: Cost-Efficient Feature Selection for Horizontal Federated Learning

Paper IV: Personalized Multi-tier Federated Learning

Paper V: Predicting Event Memorability using Personalized Federated Learning

Paper VI: The Case for Federated Learning in Developing Personalized Image Privacy Advisor

Advancing Federated Learning: Algorithms and Use-Cases

UMEÅ UNIVERSITY

Paper I	Fed-FiS: A Novel Information- Theoretic Federated Feature Selection for Learning Stability
Paper III	Cost-Efficient Feature Selection for Horizontal Federated Learning

Problem	Effect	Solution	Impact	
 Data heterogeneity 	• Learning	Feature selection	• Learning OO	
Features	• Training time 🔀 🕇	Fed-FiS Fed-MOFS	• Training time 🛛 🔀 🦊	
features across clients	• Performance		• Performance -	
Paper I and III 📄 Objective RO1				

Contributions

- Local feature subset selection
 - FCMI (Relevance)
 - FFMI (Redundancy)
 - Clustering
- **Global** feature subset selection
 - Fed-FiS (Score-function)
 S(f_k)
 - Fed-MOFS (Multiobjective optimization)

FCMI: Feature Class Mutual Information

FFMI: Feature Feature Mutual Information

28 november 2024

and Use-Cases

Results and Analysis

Performance

- Fed-MOFS vs Fed-mRMR
 - 4% 5%
- Fed-FiS vs Fed-mRMR
 - 3% 6%

Source code

28 november 2024

Advancing Federated Learning: Algorithms

and Use-Cases

Results and Analysis

Wall-clock running time of federated feature selection algorithms

Efficiency

- Fed-FiS vs FSHFL
 - at least 2.46x
 - at most 11x
- Fed-MOFS vs FSHFL
 - at least 2.3x
 - at most 10.7x

Source code

UMEÅ UNIVERSITY

Paper II

Optimized and Adaptive Federated Learning for Straggler-Resilient Device Selection

Problem	Effect	Solution	Impact
	Performance	Strategic Client	• Training I I I I I I I I I I I I I I I I I I I
 Device heterogeneity 	 Convergence Training Training time 	selection L Fed-MOODS	• Performance -
			Convergence
Paper II 🗾 📥 Objective RO2			

Contributions

- Fed-MOODS
 - Device ranking based on the availability of
 - Processing capacity (AP)
 - Memory (AM)
 - Bandwidth (AB)
 - Adaptive device selection

28 november 2024

Advancing Federated Learning: Algorithms and Use-Cases

Results and Analysis

Performance when 90% are stragglers

With Fed-MOODS

- FedProx 39.55 % 👍
- FedAvg 33.39%

UMEÅ UNIVERSITY

Paper IV

Personalized Multi-tier Federated Learning

Problem	Effect	Solution	Impact
 Data heterogeneity Client drift 	 Generalization performance Image: Client i Client i Client j Convergence Global iteration 	Personalized model PerMFL	 Performance Image: Second state of the second st
	Paper III 🛛	Dbjective (RC)3)

Contributions

- PerMFL
 - A global model
 - Personalized team models
 - Personalized device models

Results and Analysis

Source code

UMEÅ UNIVERSITY

Institute of **High Performance**

Paper V

Predicting Event Memorability using Personalized Federated Learning

Visual Lifelog

- Visual life-log images acquired via wearable cameras
 - Automatically record life moments
 - 2 images per min to 30 FPS
 - ~1500 images per day

Outdoor

Public transport

Home

Advancing Federated Learning: Algorithms and Use-Cases

Event Memorability

28 november 2024

Advancing Federated Learning: Algorithms and Use-Cases

*Image of inter-subject variation is generated using DALL-E

Problem

Effect

- Event memorability prediction
- Data heterogeneity
- Inter-subject variation

9

My

score

28 november 2024

and Use-Cases

Advancing Federated Learning: Algorithms and Use-Cases

Contributions

FedMEM

- Clustered personalized FL
- Memorability Score Distribution based Clustering (MSDC) of the lifeloggers
- Model Similarity Score (MSC) between lifeloggers, cluster model, and global model
- MSC based clustering

Results and Analysis

Advancing Federated Learning: Algorithms and Use-Cases

UMEÅ UNIVERSITY

Institute of **High Performance**

Paper VI

The Case for Federated Learning in Developing Personalized **Image Privacy Advisor**

Privacy Advisor

- Key functions
 - Detect sensitive information
 - Personalized risk assessment
- Recommendations for users
 - Advice on photo sharing
 - Suggestions for obfuscation

Problem	Effect	Solution	Impact
 Data heterogeneity Data scarcity Inter-subject variation 	Non-federated Privacy Accuracy	Clustered-personalized FL Data heterogeneity	Privacy Accuracy
Client 1 Client 2	Federated-global Privacy Accuracy	Daisy Data chaining Scarcity	
Private Sharing other		Paper VI 📫 Obj	ective RO3 and RO4
28 november 2024	Advancing F	ederated Learning: Algorithms and Use-Cases	32

Contributions

Available clients

ResourceFul (RF)

Resource-Limited (RL) 🗸

Data scarcity

Dynamic-Clustered-FedDC

• RF and RL both performs daisychaining

Apriori-Clustered-FedDC

- Clusters based on the personality of the users
- RL performs daisy-chaining

Results and analysis

Sharing owner

0.65 0.600000 F1-Score 6'0 0.58 0.57 0000 0000 0 0 0 0 0 0000 0000 0000 0000 0000 0.29 0000 0.24 0000 0.22 000 0.2 0000 0000 0000 00000 0000 00000 0.0 Centralized FedAva FedDC FedProx FedMEM Dynamic-Apriori-(Baseline) Clustered-Clustered-FedDC (PM) FedDC (PM) Models

Performance (Sharing owner)

- Dynamic-Clustered-FedDC (PM)
 - 5% better than FedMEM
 - 7% better than Baseline
 - 36% better than FedDC
 - 41% better than FedProx
 - 43% better than FedAvg

Advancing Federated Learning: Algorithms and Use-Cases

Conclusion

Acknowledgement

Advancing Federated Learning: Algorithms and Use-Cases

Supervisor

Dr. Monowar Bhuyan

Co-author:

Mentor Dr. Debaditya Roy Co-author: **Paper V and VI**

Ali Dadras Co-author **Paper IV**

Co-supervisor Prof. Erik Elmroth Co-author: **Paper I and III**

Mentor Dr. Alp Yurtsever Co-author: **Paper IV**

Advancing Federated Learning: Algorithms

and Use-Cases

Mentor Dr. Vigneshwaran Subbaraju Co-author: **Paper V and VI**

Devvjiit Bhuyan Co-author **Paper III**

Vengateswaran Subhramanium Co-author **Paper VI**

Dr. Xuan-Son Vu Co-author **Paper II**

28 november 2024

38

Publication list

Paper I : Sourasekhar Banerjee, Erik Elmroth, and Monowar Bhuyan. *Fed-FiS: A Novel Information-Theoretic Federated Feature Selection for Learning Stability*. Proceedings of the 28th International Conference on Neural Information Processing (ICONIP), Springer, Vol. 1516, pp. 480-487, 2021.

Paper II: Sourasekhar Banerjee, Xuan-Son Vu, and Monowar Bhuyan. *Optimized and Adaptive Federated Learning for Straggler-Resilient Device Selection*. Proceedings of the International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1-9, 2022.

Paper III: Sourasekhar Banerjee, Devvjiit Bhuyan, Erik Elmroth, and Monowar Bhuyan. *Cost-Efficient Feature Selection for Horizontal Federated Learning*. IEEE Transactions on Artificial Intelligence (TAI), IEEE, doi: 10.1109/TAI.2024.3436664, pp. 1-15, 2024.

Paper IV: Sourasekhar Banerjee, Ali Dadras, Alp Yurtsever and Monowar Bhuyan. *Personalized Multi-tier Federated Learning*. Accepted for publication in the 31st International Conference on Neural Information Processing (ICONIP), pp. 1-16, 2024. **(Accepted)**

Paper V: Sourasekhar Banerjee, Debaditya Roy, Vigneshwaran Subbaraju, and Monowar Bhuyan. *Predicting Event Memorability using Personalized Federated Learning*. pp. 1-8, 2024. **(Submitted)**

Paper VI: Sourasekhar Banerjee, Vengateswaran Subramaniam, Debaditya Roy, Vigneshwaran Subbaraju, and Monowar Bhuyan. *The Case for Federated Learning in Developing Personalized Image Privacy Advisor*. pp. 1-12, 2024. **(Submitted)**

Thank You!

<u>sourasb@cs.umu.se</u> <u>https://sourasb05.github.io/</u>

